Método de Newton Modificado p/ Raízes Multiplas
Publicado por Rafael Amorim 28/03/2005
[ Hits: 11.466 ]
Homepage: http://www.rafa-amorim.com.br/
O Algoritmo foi desenvolvido para cálcular raízes multiplas de polinômios com grau menor ou igual a 6, através do Método de Newton Modificado. Espero que seja de grande ajuda!!!
#include <stdio.h>
#include <math.h>
double calculafx(double coef[6], double p0){
double fx;
int i;
fx = coef[6];
for(i= 5;i>=0;i--){
fx = (p0*fx) + coef[i];}
return fx;}
double calculadfx(double coef[6], double p0){
double fx, dfx;
int i;
fx = coef[6];
dfx = coef[6];
for(i= 5;i>=1;i--){
fx = (p0*fx) + coef[i];
dfx = (p0*dfx) + fx;}
return dfx;}
double calculaddfx(double coef[6], double p0){
double fx, dfx, ddfx;
int i;
fx = coef[6];
dfx = coef[6];
ddfx = coef[6];
for(i= 5;i>=2;i--){
fx = (p0*fx) + coef[i];
dfx = (p0*dfx) + fx;
ddfx = (p0*ddfx) + 2*dfx;}
return ddfx;}
double modulo(double x){
if (x>=0.0){
return (x);}
else{
return (-1.0*x);}}
void main(void)
{
int n, op, grau, i;
double e, numer, denom, p0, p, fx, dfx, ddfx, tol, coef[6];
printf("\e[H\e[2J");
tol = 0.000001;
printf("Digite 0 p/ polinômio ou 1 p/ exponecial: ");
scanf("%i", &op);
if (op>0){
printf("\nEntre com o ponto inicial: ");
scanf("%lf", &p0);
fx = exp(p0) - p0 -1;
dfx = exp(p0) -1;
ddfx = exp(p0);
n =1;
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
printf("\nP%i %lf\n", (n-1), p0);
e = modulo(p-p0);
while (n<20 && e>=tol) {
p0 = p;
fx = exp(p0) - p0 -1;
dfx = exp(p0) -1;
ddfx = exp(p0);
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
n++;
e = modulo(p-p0);
printf("P%i %lf\n", (n-1), p0);}
printf("\nAproximação p/ raíz é %e\n", p);
printf("\nAproximação da f(x) no ponto é %e\n", fx);
printf("Com %i iterações\n\n", n);}
else{
printf("Entre com o grau do polinômio: ");
scanf("%i", &grau);
for(i = 0 ; i <= 6 ; i++){
coef[i] = 0;
}
for(i = 0 ; i <= grau ; i++){
printf("\nEntre com o coeficiente a%i: ", i);
scanf("%lf",&coef[i]);
}
printf("\nEntre com o ponto inicial: ");
scanf("%lf", &p0);
n = 1;
fx = calculafx (coef,p0);
dfx = calculadfx (coef,p0);
ddfx = calculaddfx (coef,p0);
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
printf("\nP%i %lf\n", (n-1), p0);
e = modulo(p-p0);
while (n<20 && e>=tol) {
p0 = p;
fx = calculafx (coef,p0);
dfx = calculadfx (coef,p0);
ddfx = calculaddfx (coef,p0);
p = p0 - (fx*dfx)/((dfx*dfx)-(fx*ddfx));
n++;
e = modulo(p-p0);
printf("P%i %lf\n", (n-1), p0);
}
printf("\nAproximação p/ raíz é %e\n", p);
printf("\nAproximação da f(x) no ponto é %e\n", fx);
printf("Com %i iterações\n\n", n);
}}
Um Classico exercicio de Lógica de Programação
Jogo Final Fight - Haggar (com gráficos)
Calculando PI usando série de Leibniz
AA linux kernel modificado por minhe
IA Turbina o Desktop Linux enquanto distros renovam forças
Como extrair chaves TOTP 2FA a partir de QRCODE (Google Authenticator)
Linux em 2025: Segurança prática para o usuário
Desktop Linux em alta: novos apps, distros e privacidade marcam o sábado
IA chega ao desktop e impulsiona produtividade no mundo Linux
Atualizando o Fedora 42 para 43
Como saber se o seu e-mail já teve a senha vazada?
Como descobrir se a sua senha já foi vazada na internet?
\Boot sem espaço em disco (Fedora KDE Plasma 42) (0)
Mint Xfce não mantém a conexão no wi-fi (2)
Problemas com Driver NVIDIA (5)









