Criptografia assimétrica com o RSA

Devido a dificuldade de troca de chaves, os algoritmos assimétricos são o principal motor de comunicações cifradas sobre SSL, como o HTTPS. De fácil compreensão, o RSA é um interessante método matemático que permite a cifra assimétrica baseado em números primos. E você pode brincar de RSA com a sua calculadora bc de linha de comando.

[ Hits: 184.666 ]

Por: Elgio Schlemer em 05/08/2009 | Blog: https://profelgio.duckdns.org/~elgio


Introdução



Este artigo não pode ser considerado um artigo isolado. Ele faz parte de uma sequência de outros artigos sobre o tema. Se você não é versado no assunto da criptografia, talvez queira ler os artigos anteriores antes de prosseguir a leitura deste.

A primeira vez que escrevi sobre criptografia foi em fevereiro de 2009, com o artigo Introdução a criptografia. Neste eu defini algumas terminologias, explicando o que é chave, criptoanálise e força bruta, além de conceituar os tipos de algoritmos existentes.

Na sequência, em março de 2009, dei continuidade ao tema com o artigo Criptografia chave simétrica de bloco e de fluxo, que descrevia o primeiro tipo, os de cifras simétricas.

Por fim, em Julho de 2009, desejava completar a série falando sobre os algoritmos assimétricos. Porém ao perceber que o artigo estava ficando demasiadamente grande, optei em dividí-lo em duas partes, sendo que a primeira parte tratou dos fundamentos matemáticos que permitiram a construção do RSA, bem como situá-lo na história (Fundamentos da criptografia assimétrica).

Este artigo é, portanto, uma segunda parte sobre algoritmos assimétricos e traz, não apenas a descrição de um algoritmo assimétrico, como também um passo a passo de como ele realmente funciona, podendo qualquer um testar.

Para usar um algoritmo de criptografia é necessário que as partes envolvidas possuam um segredo em comum, uma chave. Ao transmitir uma mensagem o emissor pode cifrar ela com um algoritmo de criptografia usando esta chave. O receptor recupera a mensagem usando a mesma chave.

Porém existe um problema que é o compartilhamento desta chave, ou seja, de que forma o emissor e receptor chegaram a um consenso sobre seu valor. Se existe a possibilidade de um encontro pessoal e físico o compartilhamento desta informação pode ser realizado com segurança, mas se o único meio de transmissão existente entre eles é inseguro, tem-se um problema sério. Não se pode enviar a chave pela Internet, pois em caso de alguém estar escutando, este verá esta informação. Por isto que durante muitos anos pesquisadores procuraram um algoritmo que fosse assimétrico.

Um algoritmo assimétrico possui mais de uma chave, tipicamente duas. Uma delas é usada para cifrar e a outra serve apenas para decifrar. Caso tal algoritmo existisse, o emissor poderia enviar pela Internet apenas a chave que cifra, mantendo em segredo a chave que decifra, ou vice versa.

A comunidade científica desistiu desta busca, classificando o problema como sem solução, mas Whitfield Diffie e Martin Hellman insistiram na utopia de um algoritmo assimétrico. Suas buscas frustraram-se tentativa por tentativa até que finalmente fizeram uma importante descoberta ao explorar a matemática modular (detalhes em Fundamentos da criptografia assimétrica).

Infelizmente esta descoberta não resultou, de imediato, em um algoritmo assimétrico mas sim em um protocolo de troca de chaves que recebeu o nome de Diffie-Hellman, usado até hoje. Mesmo tendo continuado sua busca, foram os pesquisadores Ronald Rivest, Adir Shamir e Leonard Adlemann que chegaram ao primeiro algoritmo de cifra assimétrico, o popularmente conhecido algoritmo RSA (mais tarde tornou-se público que o governo britânico já possuía quatro anos antes um algoritmo assimétrico e que este seguia os mesmos princípios do RSA).

Talvez não seja do interesse de muitos entender como o RSA funciona. Afinal, nós, da área de TI, não os elaboramos, apenas os usamos. Muitos destes algoritmos são baseados em princípios matemáticos que nos são distantes e, não raro, nos resignamos a aceitar e acreditar nas informações que os matemáticos nos contam.

Por exemplo, se eles nos dizem que a operação exponencial de aritmética modular não pode ser revertida, que seja! Se nos dizem que a descoberta de dois divisores primos de um número só pode ser feita por tentativa e erro, que seja. Lemos, implementamos e usamos.

Contudo eu, particularmente, acredito que conhecer as coisas, as entranhas, o como é feito, ter o poder de fazer no braço, é um prazer indescritível.

Estejam com suas calculadores bc na mão.

    Próxima página

Páginas do artigo
   1. Introdução
   2. A teoria dos algoritmos assimétricos
   3. RSA passo a passo
   4. Não frite seu processador
   5. Quebrando o RSA: um desafio para você valendo um livro
   6. Conclusão
Outros artigos deste autor

Autenticação por desafio e resposta no SSH

Guerra Infinita, uma análise da Ciência da Computação

Parâmetros interessantes do scanf e do printf em C

Estrutura do IPTables 2: a tabela nat

Introdução a criptografia

Leitura recomendada

CheckSecurity - Ferramenta para segurança simples e eficaz, com opção para plugins

Chkrootkit - Como determinar se o sistema está infectado com rootkit

VPN em Linux com OpenVPN

Carnivore e Altivore: Os predadores do FBI

Implementando uma política de segurança eficaz

  
Comentários
[1] Comentário enviado por cesar em 05/08/2009 - 14:34h

Nota 10!

parabéns elgio!

[]'s

[2] Comentário enviado por elgio em 05/08/2009 - 14:53h


VALENDO!

Valores de N publicados!
http://www.vivaolinux.com.br/topico/Seguranca-Da-Informacao/Desafio-1-RSA

[3] Comentário enviado por cesar em 05/08/2009 - 15:17h

@elgio

Fiquei interessado neste "teorema de Euclides e atalhos matemáticos para cálculo de módulo" tem como você me enviar este material por e-mail? não sei se pode mandar por causa do desafio, mas quando concluir o desafio tú me manda?
meu e-mail é cesar_macari@msn.com

[]'s

[4] Comentário enviado por elgio em 05/08/2009 - 15:33h

O teorema de euclides é uma pequena variação da fórmula para cálculo do máximo divisor comum. Está publicado no meu site e o link é fornecido no artigo.

Quanto ao atalho matemático, claro. Mas depois. com o tempo. Também teria as explicações dos 3 testes de primaridade. não sou matemático, mas sou curioso. Corri muito atras de alguns conceitos para poder entender e até mesmo ACREDITAR no RSA :-D

Estou escrevendo um NOVO artigo sobre linguagens que irá ajudar MUITO a quebrar o N. Mas este eu vou segurar para publicar depois.

[5] Comentário enviado por fernandoborges em 06/08/2009 - 13:13h

Prof. Elgio, parabéns pelo rigor com que tratou o assunto. Mesmo sendo formado em Matemática, ainda me faltavam alguns conceitos que relacionassem Teoria dos Numeros e Criptografia Assimétrica. Comecei uma Pós nesse ramo em 2007, mas infelizmente tive que trancar. Seu artigo me remeteu ao OpenVPN, que aliás, é uma das minha ferramentas em meu trabalho atual. O Sr poderia fazer uma análise da segurança implementada no OpenVPN com certificados X509 à luz de seu conhecimento sobre criptografia?

[6] Comentário enviado por elgio em 06/08/2009 - 13:57h

Fernando:

Não importa qual programa, nenhum deles usa algoritmos Assimétricos para cifrar!

Os assimétricos, como o RSA ou o DSA são computacionalmente inviáveis, devido ao esforço matemático exigido. Um processador não daria conta de cifrar um download de um CD Iso, por exemplo.

TODOS ELES usam algoritmos SIMÉTRICOS, por serem bons e rápidos.

Olhando o man do openvpn vi que ele prefere usar o algoritmo simétrico blowfish em modo CBC (Cipher-Block Chaining, ou seja, como um algoritmo de bloco encadeando-os para evitar repetição).

Mas como toda boa ferramenta profissional, o OpenVPN suporta diversos algoritmos (execute openvpn --show-ciphers para ter uma listagem do seu).

Assim, a segurança dos dados em tráfego dependem do algoritmo e do tamanho da chave. O menor deles, ma minha versão de openvpn, é o DES com 64 bits que já está fraquinho. Usar ele pode significar estar fragilizado.

O Blowfish padrão usa 128 bits que está MUITO, mas MUITO BOM (o pessoal acha que é pouco já que o RSA deve ser de, pelo menos, 1024. Mas são princípios matemáticos distintos: http://www.vivaolinux.com.br/artigo/Introducao-a-criptografia cap 6)

Bom, mas onde entra o certificado e a criptografia assimétrica?

Quando cliente e servidor negociam, há uma troca de certificados. Um certificado tem muitas informações, incluindo a chave pública, podento estar assinado por uma certificadora.

Um certificado usa diversos algoritmos:
- RSA ou algum outro assimétrico: esta chave deve ser de pelo menos 1024 bits. Menos que isto é perigoso

- HASH: Pra as assinaturas digitais. Não convém mais usar o MD5 por conta das colisões descobertas. O bam bam bam de agora é o SHA1

Ocorre que no início cliente e servidor CRIAM uma chave de sessão de 128 bits para ser usado pelo simétrico (no caso o blowfish). Podem fazer isto usando o protocolo Diffie-Hellman. Esta negociação irá precisar de algumas mensagens, TODAS CIFRADAS PELO RSA (e gastando CPU!).

Mas são só estas poucas, pois assim que uma chave de sessão é trocada, abandonam o lentérrimo RSA e usam o "rapidésimo" simétrico (blowfish no exemplo).

Então, caro amigo, o openssl é sim EXTREMAMENTE SEGURO se observadas algumas coisas:

a) que se use algoritmos bons. O padrão que vem nele está "da hora"
b) que se usem certificados bons, sem MD5 de preferência
c) que se use uma chave forte RSA, se for o caso, de, pelo menos, 1024 bits


[7] Comentário enviado por elgio em 07/08/2009 - 10:01h

VALENDO!

Valores de N publicados!
http://www.vivaolinux.com.br/topico/Seguranca-Da-Informacao/Desafio-1-RSA

[8] Comentário enviado por fernandoborges em 08/08/2009 - 16:34h

Prof. Elgio,
Quero agradecê-lo pela rápida abordagem sobre o OpenVPN. Muito esclarecedor pra mim. Será de grande valia para que eu possa avaliar melhor a segurança dos dados que trafegam na minha VPN.
Cordiais saudações,
Fernando.

[9] Comentário enviado por marcelogpl em 09/08/2009 - 01:32h

Parabéns Professor!

Realmente um artigo muito interessante e claro nos conceitos utilizados, vai ajudar muito em projetos onde um dos focos é a segurança.

Obrigado

[10] Comentário enviado por elgio em 12/08/2009 - 16:52h

Novo desafio postado.

ESTE VALE UM LIVRO!
http://www.vivaolinux.com.br/topico/Seguranca-Da-Informacao/Desafio-2-RSA

[11] Comentário enviado por elgio em 13/08/2009 - 10:08h

Ontem pela manhã removi o link do artigo que remetia para o cálculo do D em C. Ele não funcionava para todos os casos. Agora eu REFIZ o código e voltei a citar o código em C no artigo. Esta versão, em C, FUNCIONA e corretamente calcula qualquer valor de D, mas só se ele estiver dentro da capacidade da ULA. Necessário para GANHAR O LIVRO do desafio.

Ah, mas com este código não dá para quebrar todos os D?

Ora, modifique ele: http://www.vivaolinux.com.br/artigo/Programacao-com-numeros-inteiros-gigantes/

[12] Comentário enviado por Lisandro em 10/06/2010 - 07:04h

Ótimo Artigo. Parabéns!

[13] Comentário enviado por rafatmb em 23/11/2010 - 17:23h

Excelente documentação sobre o assunto. Informações fundamentais para todos os administradores de rede linux.

um bom material de apoio em: http://cseweb.ucsd.edu/~mihir/papers/oae.pdf

Acho importante sabermos a história das coisas, e de onde vieram as soluções que hoje fazem parte do dia a dia. Muitas vezes, usamos tanto, que nem atribuimos a devida importante para as ferramentas, e deixamos também de reconhecer aqueles que passaram tanto tempo estudando e desenvolvendo a tecnologia.

Abraço a todos!

Rafael Marangoni
LPIC/1/2/3 - Expertise em Servidor Linux
http://www.brlink.com.br



[14] Comentário enviado por uberalles em 01/12/2010 - 01:28h

Grande e excelentíssimo Professor. Que pena que só encontrei este artigo agora.. há dois meses atrás, por volta de outubro, tive que fazer um programa em C, com API MySQL para tratar senhas e tals e acabei usando a função ENCODE() e DECODE() do próprio MySQL, sendo que queria ter feito em C. talvez eu reveja e refaça uma nova versão, mas a que tenho hoje está muito boa.

Um abraço e muito obrigado.
.

[15] Comentário enviado por DavidsonDFGL em 26/07/2012 - 22:13h

Poxa, de longe o melhor artigo de RSA que já li na internet, tanto que até tive vontade de implementar algo simples em C, mas me veio uns problemas:

o programa gerou aleatoriamente
p = 5
q = 11
e = 7
o n 55
o qq 40
e o d deu 23
acontece que quando cifro o número 10 por ex, o resultado é 10 também, e decifrado vira 18.
Isso seria uma infeliz coincidência, ou tem algo de muito errado com estes valores? confesso que já vi e revi estes valores e aparentemente estão certos, :(

[16] Comentário enviado por sk4d1nh4 em 26/11/2012 - 17:02h


[17] Comentário enviado por DavidsonDFGL em 26/07/2012 - 22:13h:

Poxa, de longe o melhor artigo de RSA que já li na internet, tanto que até tive vontade de implementar algo simples em C, mas me veio uns problemas:

o programa gerou aleatoriamente
p = 5
q = 11
e = 7
o n 55
o qq 40
e o d deu 23
acontece que quando cifro o número 10 por ex, o resultado é 10 também, e decifrado vira 18.
Isso seria uma infeliz coincidência, ou tem algo de muito errado com estes valores? confesso que já vi e revi estes valores e aparentemente estão certos, :(


Caro DavidsonDFGL,

acredito que tenha alguma coisa errada no seu "C". Decifrando o 10 com esses números da 10 mesmo. Faça o teste. echo (10^23)%55 | bc

[17] Comentário enviado por fabinhotfj em 21/02/2013 - 20:55h

Parabéns pelo seu artigo


[18] Comentário enviado por dougaslinux em 01/10/2013 - 00:19h

Olá, Ótimo poste!

Se alguem poder me confimar alguns sistemas que utilizam a criptografia RSA , ficarei muito grato!

[19] Comentário enviado por reinaldobatista em 15/07/2014 - 13:16h

Excelente! Parabéns! Bravo!


Contribuir com comentário




Patrocínio

Site hospedado pelo provedor RedeHost.
Linux banner

Destaques

Artigos

Dicas

Tópicos

Top 10 do mês

Scripts