
Enviado em 09/01/2015 - 11:10h
Antes de tudo , bom dia pessoal.
-----------------------------------------------------------------------------------------------------------------
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{lscape}
%\usepackage{rotating}
%\usepackage{rotfloat}
%\usepackage{natbib}
\usepackage{graphicx}
\begin{document}
%\begin{sidewaystable}
%\begin{table}[f!]
%\begin{sideways}
%\begin{landscape}
\begin{table}[h]
%\begin{sidewaystable}
%\rotatebox{90}{
\scalebox{0.85}{
\begin{tabular}{|l|l|l|l|l|}
\hline \
Distribuição & fdp & parâmetro & FGM & assimetria\\
\hline
Bernoulli & $p^k (1-p)^{1-k}$ & $p \in (0,1)$ & $q+pe^t$ & $\frac{1-2p}{\sqrt{pq}}$\\
\hline \
Binomial & ${n\choose k}p^k(1-p)^{n-k}$ & $p \in (0,1)$ & $(1-p + pe^t)^n \!$ & $\frac{1-2p}{\sqrt{np(1-p)}}$ \\
\hline
Geometrica & $(1 - p)^{k-1}\,p\!$ & $p \in (0,1)$ & $\frac{pe^t}{1-(1-p) e^t}\!$ & $\frac{2-p}{\sqrt{1-p}}\!$\\
\hline
Binomial negativa & ${k+r-1 \choose k}\cdot (1-p)^r p^k,\!$ & r$\geq$0, $p \in (0,1)$ & $\biggl(\frac{1-p}{1 - p e^t}\biggr)^{\!r}$ & $\frac{1+p}{\sqrt{pr}}$ \\
\hline
Poisson & $\frac{\lambda^k}{k!} e^{-\lambda}$ & $\lambda\geq$0, $k\geq$0 & $\exp(\lambda (e^{t} - 1))$ & $\lambda^{-1/2}$\\
\hline
Exponencial & $\mathrm \lambda e^{-\lambda x}$ & $\lambda\geq$1,x$\geq$0 & $\frac{\lambda}{\lambda-t}$ & 2\\
\hline
Normal & $\frac{1}{\sigma\sqrt{2\pi}}\, e^{-\frac{(x - \mu)^2}{2 \sigma^2}}$ & $\mu\in$R , $\sigma^2\geq$0 & $\exp\{ \mu t + \frac{1}{2}\sigma^2t^2 \}$ & 0\\
\hline
Gama & $\frac{1}{\Gamma(k) \theta^k} x^{k \,-\, 1} e^{-\frac{x}{\theta}}$ & k$\geq$0, $\theta\geq$0 & $\scriptstyle (1 \,-\, \theta t)^{-k}$ & $\scriptstyle \frac{2}{\sqrt{k}}$ \\
\hline
Beta & $\frac{x^{\alpha-1}(1-x)^{\beta-1}}{ Beta(\alpha,\beta)}$ & $\alpha\geq$0, $\beta\geq$0 & $1 +\sum_{k=1}^{\infty} \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$ & $\frac{2\,(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}$\\
\hline
Uniforme & $\frac{1}{a-b}$, a$\leq$x$\geq$b & $-\infty < a < b < \infty$ &$\frac{\mathrm{e}^{tb}-\mathrm{e}^{ta}}{t(b-a)},\text{para }$ t $\neq$ 0 &0 \\
\hline
Chi-quadrado &$\frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)}\; x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$ &k $\in$ N (graus de liberdade) &(1-2t)^{k/2}, t<1/2 & $\scriptstyle\sqrt{8/k}$ \\
\hline
Cauchy & $\frac{1}{\pi\gamma\,\left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]}\!$ & $\displaystyle$ x $\in$ ($-\infty$, $+\infty$)\! & não existe & indefinido \\
\hline
Log-Normal &$\frac{1}{x\sigma\sqrt{2\pi}}\ e^{-\frac{\left(\ln x-\mu\right)^2}{2\sigma^2}}$ &x $\in$ (0, $\infty$) &não está definida nos números reais & $(e^{\sigma^2}\!\!+2) \sqrt{e^{\sigma^2}\!\!-1}$ \\
\hline
Logistica &$\frac{e^{-\frac{x-\mu}{s}}} {s\left(1+e^{-\frac{x-\mu}{s}}\right)^2}\!$ &x $\in$ (0, $\infty$) &$e^{\mu t}\operatorname{B}(1-st, 1+st)$, st $\in$(-1,1) &0 \\
\hline
Pareto & $\frac{\alpha\,x_\mathrm{m}^\alpha}{x^{\alpha+1}}$, x$\ge x_m$ &$x \in [x_\mathrm{m}, +\infty$) &$\alpha(-x_\mathrm{m}t)^\alpha\Gamma(-\alpha,-x_\mathrm{m}t)$ &$\frac{2(1+\alpha)}{\alpha-3}\,\sqrt{\frac{\alpha-2}{\alpha}}$, $\alpha>3$ \\
\hline
Weibull &$\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^{k}}$, x$\geq$0 &$x \in [0, +\infty)\$ &$\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!}\Gamma(1+n/k), \ k\geq$1 &$\frac{\Gamma(1+3/k)\lambda^3-3\mu\sigma^2-\mu^3}{\sigma^3}$ \\
\hline
\end{tabular}
}
%\end{sidewaystable}
\end{table}
%\end{sideways}
%}
\end{landscape}
\end{document}
Modo Simples de Baixar e Usar o bash-completion
Monitorando o Preço do Bitcoin ou sua Cripto Favorita em Tempo Real com um Widget Flutuante
Instalando partes faltantes do Plasma 6
Adicionar botão "mostrar área de trabalho" no Zorin OS
Como montar um servidor de backup no linux
Estou tentando ser legalista, mas tá complicado! (9)
espelhar monitores nao funciona (2)
SQLITE não quer funcionar no LINUX LMDE6 64 com Lazaruz 4.2 64bit (n... (1)









